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ABSTRACT

In this work, self-organizing maps (SOMs) are used to investigate patterns of favorable near-storm envi-

ronmental parameters in a 13-yr climatology of 14 814 tornado events and 44 961 tornado warnings across the

continental United States. Establishing nine statistically distinct clusters of spatial distributions of the sig-

nificant tornado parameter (STP) in the 480 km3 480 km region surrounding each tornado event or warning

allows for the examination of each cluster in isolation. For tornado events, distinct patterns are associated

more with particular times of day, geographical locations, and times of year. For example, the archetypal

springtime dryline setup in the Great Plains emerges readily from the data. While high values of STP tend to

correspond to relatively high probabilities of detection (PODs) and relatively low false alarm ratios (FARs),

the majority of tornado events occur within a pattern of uniformly lower STP, with relatively high FAR and

low POD. Overall, the two-dimensional plots produced by the SOM approach provide an intuitive way of

creating nuanced climatologies of tornadic near-storm environments.

1. Introduction

Given a supercell, which requires moderate-to-strong

convective available potential energy (CAPE) and

strong 0–6-km vector shear magnitude (SHR6; Brooks

et al. 2003), the combination of a low-to-moderate lifting

condensation level height (LCL) and strong 0–1-km

storm-relative helicity (SRH1) has been shown to help

distinguish between nontornadic and significantly tor-

nadic cases, likely through their role in preventing the

damping effects of overly strong cold pools and en-

hancing the lifting and contracting of near-surface air via

stronger vertical perturbation pressure gradients

(Markowski et al. 2003; Markowski and Richardson

2014). These four parameters are combined in com-

posite indices such as the significant tornado parameter

(STP; Thompson et al. 2003), which in its fixed-layer

form is defined as STP 5 (MLCAPE/1000 J kg21) 3
[(2000 2 MLLCL)/1500m] 3 (SRH1/100m2 s22) 3
(SHR6/20m s21), where the ML prefix denotes mixed-

layer values of the parameters. Values of STP (collected

near tornadic events using point soundings) greater than

1 have been shown (e.g., Thompson et al. 2012) to dis-

criminate fairly well between supercellular storms ca-

pable of producing significant hail or wind but no

tornadoes, and supercellular storms capable of pro-

ducing tornadoes with a rating of 2 or greater on the

enhanced Fujita scale.

The classification and examination of two-dimensional

patterns in weather data has a long history; principal

component analysis (PCA) has been used to create pro-

totypical synoptic patterns for over 50 years (Christensen

andBryson 1966).More recently,Mercer et al. (2009) and

Shafer et al. (2010) have made use of PCA to deduce

information about the spatial structure of the near-storm

environments for tornadic and nontornadic severe

weather outbreaks; Mercer et al. (2012) made use of a

rotated principal component analysis (RPCA) to create

synoptic composites of tornadic and nontornadic severe

weather outbreaks.

Self-organizing maps (SOMs; Kohonen 1982) are tools

that have yet to be fully adopted by the severe storms

research community, despite being a prominent tech-

nique in many studies of climate (see review by Liu and

Weisberg 2011). A SOM is an artificial neural network

that can be used as a clustering method in order to group

together events with similar spatial structure in their
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parameters; the statistics of each cluster [e.g., probabil-

ity of detection (POD), the percentage of all tornadoes

for which a warning was issued prior to the tornado’s

start time, and false alarm ratio (FAR), the percentage

of all tornado warnings for which no tornado was re-

ported within the warning boundaries over the duration

of the warning] can then be calculated and assessed,

effectively providing an example of, say, low-POD or

high-FAR near-storm environments. For instance,

Nowotarski and Jensen (2013) made use of 1185 SOM-

clustered atmospheric soundings to characterize typical

tornadic, nontornadic, and nonsupercellular soundings.

Unlike PCAs, SOMs do not have any requirement of

orthogonality and lend themselves well to the task of

creating mesosynoptic composites of tornadic near-

storm environments.

We begin with a detailed description of the dataset and

methodology of this study in section 2. Section 3

provides a brief overviewof the point values of near-storm

environmental parameters for tornado events and tor-

nado warnings across the entire dataset, while section 4

makes use of SOM clustering to create and contrast the

fully two-dimensional approach to the same problem for

tornado events, and section 5 does the same for tornado

warnings. Finally, section 6 concludes and summarizes our

findings and provides guidance and motivation for future

SOM-related studies by the severe storms community.

2. Methods and data

The tornado warning and event dataset is the same as

was featured in Anderson-Frey et al. (2016): the study

period of 2003–15 comprises 14 814 tornado events and

44 961 tornado warnings. The tornado event dataset was

created by filtering county tornado segment data and

keeping the highest (E)F-scale rating within an hour

and a 40 3 40km2 area (Smith et al. 2012). Environ-

mental data corresponding to each of these tornado

FIG. 1. Several possible choices for the numberM of nodes:M5 (a) 23 2, (b) 33 3, (c) 43 4, and (d) 53 5. Some axis labels and grids have

been removed for the sake of clarity.
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events was obtained by taking archived mesoanalysis

gridded data from the grid box closest to the reported

tornado (Smith et al. 2012); the soundings were obtained

from the Rapid Update Cycle model (RUC; Benjamin

et al. 2004) for January 2003–April 2012, or the Rapid

Refresh model (RAP; Benjamin et al. 2016) for later

dates. Since tornado warnings may encompass multiple

model grid boxes, the proximity sounding chosen is that

which is nearest to the location of maximum STP con-

tained within the warning. Note that this could lead to

slightly different values for a given event that appears in

both the event and warning databases. See Thompson

et al. (2012) and Anderson-Frey et al. (2016) for dis-

cussion of the limitations of the dataset.

Our SOMs receive as input a series of 480 km 3
480km gridded RUC/RAP mesoanalysis datasets cen-

tered on either the grid point nearest the tornado (for

the tornado event dataset) or the grid point nearest the

location of maximum STP contained within the tornado

warning region (for the tornado warning dataset). The

algorithm used to create the SOM clusters is loosely

summarized as follows (Vesanto et al. 2000):

1) Create a user-specified numberM of ‘‘nodes’’, that is,

480 km 3 480 km maps of randomly generated

parameter values. The number of nodes is also the

final number of clusters.

2) Select the first input map randomly from the list of

input maps. Compare this map with each of the M

nodes via point-by-point analysis of Euclidean

distance.

3) ‘‘Nudge’’ each node: nodes that are more similar to

the input map (i.e., those with smaller Euclidean

distances) are more strongly nudged toward the

input map values. Nodes that are less similar to the

input map are not as strongly nudged. Refer to

Nowotarski and Jensen (2013, their Fig. 3) for a

diagram depicting this step.

FIG. 2. Geographical plots of 2003–15 tornado events. (a) Tornado events for daytime (red; events occurring between local sunrise and

2 h before local sunset), EET (cyan; events occurring between 2 h before and 2 h after local sunset), and nocturnal (blue; events occurring

between 2 h after local sunset and local sunrise) storms. Note the general west-to-east progression from daytime to EET to nocturnal

tornadic activity, consistent with the upscale development and progression of storms throughout the day. (b) Tornado events for spring

(cyan), summer (red), fall (green), and winter (blue) storms. Note the shift in seasonality, with the Great Plains and much of the Midwest

exhibiting the traditional spring storms, the northern states showing a tendency toward summer storms, and southern states showing

a great deal of tornadic activity either associated with hurricane season (fall) or even in the winter. (c) Map of geographical regions of the

United States used in this study. [Adapted from Anderson-Frey et al. (2016).]
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4) Select a second input map randomly from the list of

input maps. Compare this map with each of the M

new nodes point by point, resulting in the same

nudging process.

5) Repeat this process across all input maps, and then

iterate several times until the nodes stabilize into M

statistically distinct maps.

6) Compare each input map with the nodes for the final

iteration. Each input map is then assigned to the

cluster corresponding to the node it most closely

resembles. Each cluster can then be analyzed

separately.

The input into the SOM algorithm is thus a large

number of 480 km3 480 kmmaps of any environmental

variable (in our case, STP), and the output is a much

smaller number M of clusters of 480 km 3 480km maps

of that variable, each of which can be summarized as a

statistically distinct characteristic node. The only user-

specified quantity in the SOM process is the number M

of nodes, and this flexibility is both a blessing and a

curse. On the one hand, it can be extremely valuable to

specify the complexity of the result (i.e., the final num-

ber of clusters). On the other hand, the specification

process is often fairly arbitrary. A SOM that uses too few

nodes means that themaps contained in each cluster will

have very similar statistics to the dataset as a whole,

since each cluster samples a large portion of the dataset.

A SOM that uses too many nodes, on the other hand,

will result in redundant nodes with functionally identical

appearance (i.e., two nodes will show essentially the

same map). Through sensitivity testing, for much of the

following workM5 9 nodes seemed to strike an optimal

balance between capturing important features in the

data and reducing redundancy in the final nodes; see

Fig. 1 for several alternative examples of numbers of

FIG. 3. SOM results for 33 3 nodes of 2003–15 tornado event values of STP (unitless) on a 480 km3 480 km grid

with the location of the tornado at the center (white dot) of each node. The numbers of events are listed at the top-

right corner of each node in green. White contours delineate STP 5 1.
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nodes. The SOM process is iterated 200 times (sensi-

tivity tests did not show appreciable differences with

higher numbers of iterations) before grouping each map

into its component cluster.

3. Environmental overview

It is useful to first examine some parameter-space

diagrams in order to properly characterize the envi-

ronments in which tornadic activity occurs. Anderson-

Frey et al. (2016) found that tornado events and tornado

warnings both occur over a wide variety of environ-

ments, with the highest density centered on about

1250Jkg21 ofMLCAPE, 25ms21 of 0–6-km shear, 800-m

MLLCL heights, and 200m2 s22 of 0–1-km storm-relative

helicity (their Fig. 2). Generally speaking, forecast skill

tends to increase (i.e., POD is higher and FAR is lower) as

MLCAPE and SHR6 increase; that is, as we move into

environmentsmore traditionally regarded as favorable for

supercellular storms (Anderson-Frey et al. 2016, their

Fig. 4). For the MLLCL–SRH1 parameter space, POD

exhibits a fairly clear threshold at around 100m2 s22 of

SRH1, below which the skill is considerably lower. In

contrast, the FAR exhibits little variability with either

SRH1 or MLLCL heights (Anderson-Frey et al. 2016,

their Fig. 4).

Figure 2 depicts the geographical distribution of the

tornado events used in the following analysis. The

points are colored according to time of day (Fig. 2a)

and time of year (Fig. 2b). Figure 2c shows the five

geographical regions to be used in the discussion of

the results.

4. Self-organizing maps: Tornado events

Figure 3 shows the output for a SOM created for the

tornado events based on patterns of STP values. Strictly

speaking, the nine nodes depicted are in fact the mean

environments of each of the nine clusters, but in the

following discussion the term ‘‘node’’ will be used to

discuss each cluster. Note that, for instance, node 1

consists of extremely high values of STP centered on the

location of the tornado, whereas node 7 shows a dra-

matic east–west gradient in STP values and node 6 is

characterized by low values of STP.

Figure 4 depicts graphical summaries of relevant cat-

egories for each node, including the geographical re-

gions and time of day and year making up the node. In

FIG. 4. (a) Bar plot of percentages corresponding to each tornado event STP SOM node (see Fig. 3) for each

category (POD, geographical location, time of day, and season). These plots are not normalized by the number of

events sorted into each node; for instance, the percentages within the Great Plains category will sum to 100%.

(b) Bar plot of normalized percentages, all but PODdivided through by the number of events sorted into each node.

For instance, the percentages for the node 1 bars within the five geographical categories will sum to 100%.
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Fig. 4a, for each category, the number of events in each

node is divided by the total number of events in that

category so that one can easily see the mix of nodes

making up the category. In Fig. 4b, for each node, the

number of events in a particular category is divided by

the total number in that node, such that one can see the

categories that are most influential to a particular node.

Note that only POD, and not FAR, can be calculated

here, given that false alarm warnings are not included in

the event database.

Figure 3 shows that the environments clustered into

node 1 feature extreme values of STP across a wide re-

gion, with the highest values centered on the location of

the tornado. When we plot some of the STP-related

parameters within this cluster (Fig. 5), we find that these

high STP values are generally due to extreme values of

SRH1 (Fig. 5a); in order to compare quantitatively, we

define, for instance, MLCAPEN as the mean MLCAPE

across node N and hMLCAPEi as the mean MLCAPE

value computed from the nine nodes’ MLCAPE values

(see Table 1 for the list of values). MLCAPE at node 1

(Fig. 5b), for instance, is fairly high compared to other

nodes (MLCAPE1 5 2237 J kg21 is more than one

standard deviation higher than hMLCAPEi5 1251Jkg21),

but the SRH1 values show a more dramatic difference

(SRH11 5 429m2s22 is more than two standard deviations

higher than hSRH1i 5 222m2s22). These environments

with particularly high values of STP correspond to the

highest values of POD in the dataset (Fig. 4a; 94.2%, as

compared with the 66.4% average for the entire dataset);

this is what we might expect based on the proximity

sounding studies inAnderson-Frey et al. (2016), but this plot

confirms that having a widespread geographical region of

high STP values seems particularly helpful for issuing ac-

curate warnings. Node 1 environments are overwhelmingly

likely to occur in either the Great Plains (55.3%) or the

South (42.7%), are more likely to occur during the early

evening transition (EET; 48.5%) or the night (35.9%) than

during the day (15.5%), and are overwhelmingly springtime

events (93.2%) (Fig. 4b).

Nodes 2 and 7 show the value of a two-dimensional

approach over a point-based proximity sounding ap-

proach. The nodes feature similar values of STP at the

location of the tornado (6.5 and 6.6, respectively), but

the spatial distribution of STP values surrounding the

tornado are quite different (Fig. 3). As Fig. 5 shows,

node 7 has a strong east–west gradient in MLLCL

heights (Fig. 5e) andMLCAPE (Fig. 5f), which is typical

of, for example, a dryline setup; in contrast, node 2

shows smaller gradients in both parameters (Figs. 5c,d),

but stronger MLCAPE to the southwest dominates the

STP signal. As depicted in Fig. 4b, nodes 2 and 7 have

similar values of POD, but node 2 is slightly dominated

by the South (41.4%), with many Great Plains (32.7%)

TABLE 1. Mean values of STP component parameters (MLCAPE, SHR6, MLLCL, and SRH1) for the tornado event nodes depicted in

Fig. 3, along with probability of detection values for each node.

MLCAPE (J kg21) SHR6 (m s21) MLLCL (m) SRH1 (m2 s22) POD (%)

Node 1 2237 31 738 429 94.2

Node 2 2114 30 807 406 86.3

Node 3 1517 28 836 340 83.0

Node 4 1739 30 806 373 86.5

Node 5 1244 27 832 289 72.8

Node 6 956 21 1065 134 53.8

Node 7 2499 30 972 323 87.1

Node 8 2168 27 1058 278 82.8

Node 9 1209 26 846 284 74.7

All events 1251 24 966 222 66.4

FIG. 5. Tornado event SOMplots of interest. These are the mean

values of the given parameter averaged across each node as defined

in Fig. 3: (a) node 1 SRH1 (m2 s22), (b) node 1 MLCAPE (J kg21),

(c) node 2 MLLCL (m), (d) node 2 MLCAPE (J kg21), (e) node 7

MLLCL (m), and (f) node 7 MLCAPE (J kg21).
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and Midwest (25.9%) events as well, whereas node 7 is

strongly dominated by the Great Plains (67.3%), with

relatively few South (16.2%) or Midwest (16.5%)

events. The isolation of node 7’s prototypical Great

Plains springtime likely dryline setup would not be

possible with a single proximity sounding value of STP;

with the SOM approach, the distinction is clear. The

SOM method described herein can objectively and ef-

ficiently differentiate between these two distinct sce-

narios. As a result, more precise environmental

climatologies can be developed for a particular meteo-

rological scenario (e.g., Great Plains springtime dryline

setup) that is climatologically more frequent to a geo-

graphic region. Furthermore, this method can indirectly

incorporate other associated variables (e.g., dryline,

surface low placement relative to the warm sector,

upper-level flow pattern) common to these setups and

can be inferred by the spatial distribution of STP.

Finally, node 6 contains the most marginal values of

STP across the board (Fig. 3), together with the lowest

value of POD (53.8%). This extremely marginal node

also has a higher percentage of daytime events than

EET events and is characterized by more summer

(41.7%) than spring (34.4%) events and makes up

nearly 50% of the dataset.

5. Self-organizing maps: Tornado warnings

Similar to node 1 in the tornado events database

(Fig. 3), node 1 in the tornado warnings database (Fig. 6)

consists largely of high values of STP. Using a similar

approach to that taken for the analysis of the event SOMs

in Fig. 4, Fig. 7b shows that the extreme environments in

node 1 feature relatively low FAR, with a value of 67.7%

(cf. with the dataset’s overall FAR of 76.3%). Note that

only FAR, and not POD, can be calculated here, given

that events for which no warning was issued are not in-

cluded in the warning database. Node 1 environments are

also dominated by the South (65.2%), with some Great

Plains warnings (29.4%) and very few warnings in any

FIG. 6. As in Fig. 3, but for the 2003–15 tornado warning dataset rather than the tornado

event dataset. Keep in mind that while the STP SOM nodes produced for the tornado

warning dataset may resemble those in Fig. 3 corresponding to the tornado events, the datasets

are different (14 814 tornado events vs 44 961 tornado warnings) and hence the node 1 for

tornado events is not the same node 1 as is shown in tornadowarnings. Qualitative comparisons

can, however, still bemade between similar-looking environments for events and warnings, and

the warning node order has been changed to facilitate comparison with event nodes.
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other region. In terms of time of day, node 1 features an

even split between EET and nocturnal events (40.5% and

39.4%, respectively), with many warnings also occurring

during the day (20.1%). Much like the high-STP node in

the events database (node 1 in Fig. 3), node 1 in the

warnings database is heavily dominated by springtime

warnings (92.5%). Thus, if a tornado warning is issued

within a broad region of extreme values of STP, chances

are that the warning in question occurred in the South or

the Great Plains, during the evening or night, and during

the springtime.

Nodes 3 and 5 (Fig. 6) again show the advantage of

considering the fully two-dimensional distribution of

STP values rather than relying on a single point pa-

rameter value: the two nodes feature similar values of

STP (3.3 and 2.9, respectively) at the location of the

tornado warning (white dots in Fig. 6), but node 5 has

more favorable environments to the southeast, and node

3 has more favorable environments to the southwest.

Figure 7 shows that nodes 3 and 5 have similar values of

FAR, but node 5 is dominated by Great Plains warnings

(46.2%), while node 3 contains a higher proportion of

South warnings (53.8%).

Finally, node 6 for the tornado warnings (Fig. 6), like

node 6 for the tornado events (Fig. 3), is an environment

in which extremely marginal or even zero values of STP

extend over a considerable distance. Unfortunately, the

majority of warnings ( just over 50%) are occurring in

these low-skill environments.

6. Conclusions and summary

For tornado reports and warnings, relatively favorable

environments (i.e., high values of STP) at the location of

the tornado correspond to relatively high POD and rel-

atively low FAR. The importance of the spatial distri-

bution and heterogeneity of favorable environments,

however, becomes clear whenwe consider examples such

as nodes 2 and 7 in the tornado event SOM (Fig. 3): these

two environments have similar values of STP at the lo-

cation of the tornado, but the spatial distribution char-

acterizing node 7 is likely a Great Plains springtime

dryline event, whereas node 2 represents a favorable en-

vironment that is more evenly split geographically be-

tween the Great Plains and the South. Likewise, in the

tornado warning SOM (Fig. 6), nodes 3 and 5 have similar

values of STP where the warning was issued, but node 5

has more favorable environments to the southeast, while

node 3 has more favorable environments to the south-

west. Node 5 is dominated by Great Plains warnings,

while node 3 is dominated by South warnings. Uniformly

low-STP environments dominate the tornado event and

FIG. 7. As in Fig. 4, but for the 2003–15 tornado warning dataset rather than the tornado event dataset. Here, POD

has been replaced by FAR.

1474 WEATHER AND FORECAST ING VOLUME 32

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 01/19/23 02:34 PM UTC



warning databases as a whole; the majority of tornado

events and warnings occur in these environments with

relatively high FAR and relatively low POD, which is a

pattern that persists even when (E)F0 tornadoes are re-

moved from the dataset (not shown). It is therefore rea-

sonable to conclude that tornado warning verification

skill metrics will be associated with the dominant warning

nodes during a specific time period; consequently, domi-

nant warning nodes may disproportionately influence

warning skill metrics for a particular period compared

with longer-term climatology.

The two-dimensional plots produced by self-organizing

maps are intuitive and immediately highlight similarities

and differences between environments at a more precise

level than the traditional proximity sounding approaches.

Themethodology outlined and demonstrated in this work

is intended to provide a framework that can be used for

any studies that would benefit from enhanced and more

nuanced climatologies of the near-storm environments

of severe weather events. In upcoming work, we will use

the SOM approach to probe the near-storm environ-

ments and statistics of tornado outbreaks, as well as

the environments and statistics of the warnings issued

during these events; we also will explore the use of the

SOM approach for different combinations of convective

ingredients.
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